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Effective and Efficient Detection of Moving
Targets From a UAV’s Camera

Sara Minaeian, Jian Liu, and Young-Jun Son

Abstract— Accurate and fast detection of the moving targets
from a moving camera are an important yet challenging problem,
especially when the computational resources are limited. In this
paper, we propose an effective, efficient, and robust method to
accurately detect and segment multiple independently moving
foreground targets from a video sequence taken by a monocular
moving camera [e.g., onboard an unmanned aerial vehicle (UAV)].
Our proposed method advances the existing methods in a number
of ways, where: 1) camera motion is estimated through tracking
background keypoints using pyramidal Lucas–Kanade at every
detection interval, for efficiency; 2) foreground segmentation
is applied by integrating a local motion history function with
spatio-temporal differencing over a sliding window for detecting
multiple moving targets, while the perspective homography is
used at image registration for effectiveness; and 3) the detection
interval is adjusted dynamically based on a rule-of-thumb tech-
nique and considering camera setup parameters for robustness.
The proposed method has been tested on a variety of scenarios
using a UAV camera, as well as publically available data sets.
Based on the reported results and through comparison with
the existing methods, the accuracy of the proposed method in
detecting multiple moving targets as well as its capability for real-
time implementation has been successfully demonstrated. Our
method is also robustly applicable to ground-level cameras for the
ITS applications, as confirmed by the experimental results. More
specifically, the proposed method shows promising performance
compared with the literature in terms of quantitative metrics,
while the run-time measures are significantly improved for real-
time implementation.

Index Terms— Effectiveness, image motion analysis, object
detection, robustness, unmanned aerial vehicles.

I. INTRODUCTION

THE first functional step in most autonomous systems
(e.g. visual surveillance and intelligent transportation) is

to detect the events/targets through sensors (mostly cameras),
so that proper decisions can be made for the actuators, accord-
ingly [1]. Furthermore, cameras are increasingly adopted
onboard unmanned aerial vehicles (UAVs), autonomous vehi-
cles, and other types of intelligent agents, which require
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making accurate and real-time decisions. Hence, it is vital
to design and develop effective, yet efficient computer vision
algorithms for robust operations in dynamic scenes. In par-
ticular, moving object detection via UAV for the application
of crowd control could be a very challenging problem due
to the onboard moving camera with various orientations. This
problem is considered ill-posed with respect to the unknown
surveillance environment (due to the freely moving UAVs)
and possible variations in appearance and motion of the
targets. Although several scholarly works in the literature
have addressed motion detection from videos captured by
a hand-held camera, the existing methods are either too
complex [2], [3], or cannot accurately segment the indepen-
dently moving foreground from moving background in a
robust manner [4]–[6]; hence, they lack adequate accuracy
and speed to be applied with a monocular camera in an
online application. Moreover, for moving object detection
via UAV, the focus is on segmenting the independently mov-
ing foreground regions. Due to the unknown prior model
of the background and dynamics of the foreground targets,
supervised object detection techniques are not directly applica-
ble to the problem of unknown moving targets segmenta-
tion. This includes popular deep learning and convolutional
neural networks (CNN)-based methods, such as fast region-
based CNN (R-CNN) [7], superpixel-level CNN (s-CNN) [8],
fully conventional networks (FCN) [9], or region proposal
network (RPN) [10], which are mostly being used for recog-
nition of known targets or region segmentation (e.g. road
detection). It is noted that in general, deep learning methods
feature high computational costs and mostly focus on single
image detection and recognition, which is not feasible for
UAVs with limited onboard computational resources.

Considering such challenges, the main goal of this paper is
to propose an effective and efficient foreground segmentation
method for detection of independently moving targets to be
used via a UAV’s moving camera for fast and reliable decision-
making (e.g. for autonomous surveillance of human crowds
as in [11]). The proposed method is intended to advance the
existing literature in three ways, where: 1) Background motion
estimation (in absence of a prior model) is done using pyra-
midal version of optical flow method for tracking extracted
background keypoints at every �t frames (detection interval);
2) Foreground segmentation is done through integrating spatio-
temporal differencing and local motion history techniques over
a sliding window of frames (with gap �t), registered via
a perspective transformation (i.e. Homography) for reducing
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the image registration error and also differentiating multiple
moving targets; and 3) A heuristic is proposed to adjust the
detection interval, based on UAV’s altitude and speed for
robust real-time performance.

As a result, the independently moving foreground blobs can
be segmented accurately in near real-time, while the method
is robust to changes in the view angle and movement velocity.
To test and demonstrate the proposed method, experimental
studies have been conducted, involving a variety of scenarios
using UAV videos for crowd control application, as well as
available datasets in the literature for autonomous surveil-
lance and other domains such as intelligent transportation
systems (ITS). The reason is that, although this work is
mainly proposed for visual surveillance by UAVs, it can be
easily adopted to ITS, which highly rely on accurate vehicle
detection and improved situation awareness techniques to
provide required data of traffic counting, speed monitoring,
presence detection, and vehicle classification. It is also noted
that the focus of visual surveillance application in this work is
on scenarios with low to medium density crowd scenes, where
the approximate ratio of foreground to background regions in
a frame is less than one. Alternative methods, such as Anchor-
based group detection [12] have been presented in the literature
to be used for highly crowded scenarios.

The rest of this work is organized as followed: Section II
provides a review of the related literature on moving object
detection from moving camera and discusses research gap
and limitations of the existing methods. The innovation and
contribution of this work is elaborated in this section as
well. Section III describes the proposed method for detection
of independently moving targets from the moving camera,
in detail. The experimental results on a series of captured
shots from a UAV, as well as available datasets are presented
in Section IV, for demonstrating the accuracy, efficiency,
and robustness of the method, while comparisons with other
methods are considered. Finally, Section V concludes the
paper and discusses the future research directions.

II. BACKGROUND AND RELATED WORK

Three categories of methods are traditionally considered for
solving a motion detection problem: 1) background subtrac-
tion, which considers differences between the current frame
and a reference background model for foreground segmen-
tation, and is mostly applicable to a static or pan-tilt-zoom
camera or known environment (i.e. background); 2) spatio-
temporal filtering, which characterizes the motion pattern
of the moving target over a 3D volume (x , y, t), but is
sensitive to noise and variations in the movement pattern;
and 3) optical flow, which considers the relative movements
between an observer and the scene, and hence is robust to
simultaneous motions of both camera and target. However,
it suffers from high computational complexity and thus, is not
appropriate for real-time onboard processing. In this work,
we face the challenge of segmenting multiple moving tar-
gets in an online manner using onboard sensors and limited
computational resources. In order to separate the foreground
targets with visually plausible boundaries, several complex
separation methods are proposed, assuming that the camera

is mostly stationary, or the background is known or can
be modeled [13], [14]. However, only few research works have
addressed the problem of multiple moving targets segmen-
tation in a sequence of dynamic background images, where
applying existing methods toward an onboard camera imposes
many constraints [2]–[6], [11], [15]–[18].

As a background subtraction approach, structure from
motion (SFM) method [2] is used to estimate the camera
parameters, the sparse 3D points, and the depth map, via
a hand-held camera. Although applying this method makes
the resulted foreground mask and moving targets boundaries
accurate, they are restricted to the scenes with large depth
differences between foreground and background (hence, not
robust enough). Moreover, the algorithm is too complex and
time-consuming to be used for real-time applications, due to
its iterative refinement and camera self-calibration.

Spatio-temporal approach is also used for moving objects
detection from moving camera, through motion decomposi-
tion. However, such approaches generally require accurate
estimation of the foreground motion and hence, are not proper
for detecting multiple targets. As an instance, pixel displace-
ments and the sparse error matrices over image sequences
were computed in [4], where the latter matrix accounted
for the articulated motion of a moving object. However,
such a method is mainly applicable to scenarios with planar
background and only a single moving object. Moreover, it
miss-classifies slowly moving objects as background, while
extracts background parts with apparent ensemble motion as
foreground, and hence, applying a simple fixed ratio of thresh-
old for foreground segmentation is neither robust, nor effective
enough. To detect multiple moving targets, some literature
works have also used transformation under spatio-temporal
approach for segmenting the moving foreground [3], [5], [15].
However, the presented methods still lack required charac-
teristics to be applied via a freely moving camera in real-
time. More similar to the approach in this work, a state-of-
the-art method for continuous tracking of moving targets over
multiple cameras was proposed in [3]. Their motion detection
via moving camera was based on an adaptive background
model in which, the camera motion was estimated by an
affine transformation. However, such transformation is not
appropriate for a freely moving camera onboard a UAV, due to
its lack of generality in estimating the scene geometry. Another
limitation of such a method is the computational complexity
that results from calculating the statistics of each single pixel
over the sliding window. In more recent works [5], [15],
though, Homography is used to estimate the camera trans-
formation and also a conditional random field (CRF) model is
applied to obtain the moving foreground mask. Specifically, [5]
combined an ellipsoid shape for a camera projection model.
However, the detected moving target mask was not compact
enough, and their approach is limited to a camera in a forward
moving vehicle, rather than freely moving camera onboard a
UAV with different orientations.

As the last category, recent works focused on employ-
ing particle trajectories based on optical flow, for moving
objects detection [6], [11], [17]–[19]. Although optical flow
is rather robust to concurrent motions of foreground and
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Fig. 1. The framework for effective, efficient, and robust detection of independently moving targets via a monocular moving camera.

background, the existing classification methods generally lack
either the speed or the accuracy required for real-time mov-
ing target detection onboard a UAV. As an instance, optical
flow is used in [6] to extract dense particle trajectories for
each mesh-grid pixel only in the first frame, while apply-
ing a multi-frame epipolar constraint. Although this con-
straint provided a consistent classification between moving
and static objects, the boundaries of moving targets were
not accurate due to mislabeling of neighboring background
pixels. Moreover, the assumption of consistent reference
plane across all views is rather invalid, due to the cam-
era movements. Minaeian et al. [11] used optical flow along
with affine transformation between two successive frames
for moving target detection. However, as mentioned before,
such technique is not robust enough for moving UAV and
the accurate results are limited to the hovering movements.
In a more recent work [17], the main idea of background
motion subtraction (BMS) method is to decompose ensem-
ble motion into those of background and foreground. The
algorithm first segments the coarse foreground regions and
then applies an adaptive threshold for finer segmentation.
Despite the adaptive thresholding, BMS still mixes objects
moving at a low speed with the background, at complex
scenarios. Moreover, applying mean-shift algorithm for opti-
mizing the foreground segmentation is neither efficient in
real-time, nor consistently accurate at boundaries. There are
other recent approaches toward motion segmentation (e.g.
layered directed acyclic graph [20] or maximum weight
cliques [21]), which are not necessarily designed to detect
multiple independently moving objects, and their performance
can be deteriorated in the case of sudden movements by the
target.

Considering the limitations of related literature works, the
contribution of our proposed method for detecting indepen-
dently moving targets from a moving aerial vehicle is three
folds:

1) We address algorithm efficiency by using pyrami-
dal Lucas-Kanade (LK) tracking of background key-
points every �t frames, to estimate general background
motion, without pixel-to-pixel estimation of camera
model.

2) We address algorithm effectiveness by integrating local
motion history with spatio-temporal approach over a
sliding window with gap �t for segmenting multiple
independently moving targets, while reducing image
registration error. Also, successive frames are warped
using perspective Homography, as a more general model
compared to the popular affine transformation.

3) We address algorithm robustness by proposing a rule-
of-thumb for adjusting the detection interval according
to the scenario, to tackle different view-angles and
movement velocities.

III. PROPOSED METHODOLOGY

In this section, the details of the proposed method for detect-
ing multiple moving targets via a moving camera onboard
UAV are discussed. As the general procedure of motion
segmentation in presence of background movements, the first
main task includes compensating the camera motion, and then,
to subtract the moving background, so that the independently
moving blobs in the foreground can be finally segmented.
Fig. 1 shows an overview of the major steps of the proposed
method. We will cover the first three steps (S1 to S3) in
Section III-A below, while the last two steps (S4 and S5) are
described in Section III-B.

A. Camera Motion Compensation
To estimate the general motion of the camera, one possible

approach (as described by [3]) would be to estimate the
displacement of every single pixel across successive frames
and then, to compute the affine transformation between the two
images. However, such methods would not be efficient due to
their high computational complexity. In this work, though, first
a number of keypoints are extracted from the reference frame
and then, are tracked across multiple frames at �t intervals,
to increase both efficiency (due to a lower number of motion
equations) and effectiveness (due to the use of robust features)
of the motion estimation method.

During step S1, the method extracts the current frame’s
keypoints at time t , which have robust features to be tracked.
While any robust feature extraction method can be used for
this purpose, in this work, we adopt the good features to
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track (GFTT) method [22], which is invariant to rotation and
translation, and thus, provides a reliable motion estimation.
In GFTT, corners are characterized by two large eigenvalues
for autocorrelation matrix of the second derivative of image I,[

I ′2
u I ′

u I ′
v

I ′
u I ′

v I ′2
v

]
(1)

where I ′
u and I ′

v are the vertical and horizontal spatial
gradients of the image intensities, respectively, so that the
matrix would be both above the image noise level and well-
conditioned [22]. The keypoints are chosen such that their
smaller eigenvalue is higher than a threshold (min (λ1, λ2)>λ).
This threshold is set according to the image resolution and
illumination, in order to compensate for part of the noise. To
this end, the lower bound on λ would be determined by a
region of the image with rather uniform brightness, while its
upper bound is set based on a highly-textured region (see [22]
for more detailed criteria).

After extracting the keypoints from the current frame,
we need to track (i.e. match) them across frames in S2.
One of the distinguishing properties of the proposed method
is the use of a temporal sliding window of 3 frames with
gap �t(t , t + �t , and t + 2�t) for background elimination,
where the earliest captured frame (t) is always used as the
non-constant reference for transformation along this process.
By using such a sliding window, we aim at compensating the
background motion at different scales, which causes the fore-
ground segmentation error, while limiting the image registra-
tion error to the few frames that are currently being processed.
Hence, a poor image registration cannot affect the detection
quality of the whole sequence. To this end, the extracted
keypoints of frame t are tracked over two successive frames
of t +�t and t +2�t . In this work, the parameter �t (in terms
of number of frames in the interval) is adjusted dynamically,
so that the proposed algorithm can detect moving targets
robustly in real-time. This value is set based on a series of
parameters such as: frame per second (fps) rate of the video
stream (R(c)), UAV’s altitude (A(v)), algorithm computational
complexity (O(c)), and UAV’s speed (S(v)). As a rule-of-
thumb, the relationships between these parameters and the
efficient detection interval are shown in (2) and the appropriate
value for �t is discussed in more details in Section IV.

�t ∝ A(v)

S(v)
O(c) R(c). (2)

It is noted that using an adjustable detection interval (more
than �t = 1) in the proposed framework helps to eliminate
the inconsistent motion in lower camera speeds, due to slower
relative motion of the targets with respect to camera, and
hence, makes the algorithm more robust. The rationale to
use 3 frames for the sliding window is that, while using
less number of frames cannot adequately reduce the image
registration error, using more than 3 frames requires higher
computational resources and hence, may not be efficient for
real-time applications. On the other hand, since the proposed
method does not consider geometric constraints for foreground
segmentation (as the approaches in [2], [6]), a sliding window
of 3 frames is sufficient for effective moving target detection.

Fig. 2. The comparison of different transformation algorithms: (a) Resulted
optical flow arrows; (b) Background subtraction via affine transformation,
as in [11]; (c) Background subtraction via perspective transformation, in this
work.

In this work, we make use of the sparse optical flow
concept in order to solve the keypoints-matching problem
by the pyramidal Lucas–Kanade (PLK) algorithm [23]. This
algorithm considers the neighborhood of each detected key-
point of frame t and solves an over-constrained system of
equations for estimating the displacement of such keypoints
across subsequent frames t + �t and t + 2�t . The final
solution of this system is the keypoints displacement vector,[

vu

vv

]
=
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∑
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(3)

where vu and vv are vertical and horizontal displacements
of the keypoint, respectively. I ′

ui and I ′
vi are the spatial

gradients along the vertical and horizontal axes for pixel i
in the keypoint’s neighborhood, and I ′

ti is its time-based
derivative between the two frames. The details of parameters
setting for the PLK algorithm are discussed in the authors’
previous work [11]. The rationale to use the pyramidal version
of the algorithm is to capture larger motions by local window
of keypoint’s neighborhood at larger scales of the Gaussian
pyramid of the image, while satisfying the spatial coherence
assumption of the LK. Hence, PLK ensures that the three
main assumptions of: brightness constancy, temporal persis-
tence, and spatial coherence will not be violated, which are
required for solving the tracking problem based on least square
minimization. The PLK first tracks the keypoints over larger
spatial scales of the pyramid and then refines the initial motion
velocity assumptions through its lower levels to the raw image
pixels. Hence, it can minimize the violations of assumptions,
while tracking faster and larger motions for robustness.

Now that the reference frame’s keypoints are tracked over
the sliding window, we may use these matched pairs of points
for estimating and later compensating the camera motion
between successive frames. This process is implemented
through image registration in S3. To this end, we first need to
transform (i.e. register) each frame onto the reference frame
based on the camera motion estimation. The transformation
can be performed through a variety of methods (e.g. affine
and perspective), among which, we consider perspective trans-
formation between each pair of frames, using Homography
estimation. While an affine transformation can map a rectangle
to any parallelogram, the perspective transformation is more
general and transforms this rectangle to any trapezoid. Hence,
it can register two different images as alternative projections of
the same scene onto two different projective planes, in a robust
manner. Fig. 2 compares the background subtraction results
of applying affine transformation (as developed in [11], [18])
versus perspective transformation (as in this work), on an
urban scene via a freely moving camera onboard UAV.
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Fig. 2(a) depicts the magnified optical flow arrows
on a grayscale frame from a monocular moving camera
(onboard UAV), while Fig 2(b) represents the silhouette image
as the result of taking absolute differences of two successive
frames. In this image, the subsequent frame is registered on
the original frame using the affine transformation. As shown
in Fig. 2(b), there is a huge amount of the background seg-
mented by error as foreground (the white edges in silhouetted
image). This implies that the motion of the background (as the
result of camera movement) cannot be adequately compen-
sated, assuming an affine transformation between different
images over time, even after filtering out the miss-tracking of
the optical-flow module. Fig. 2(c) shows the same situation
under a perspective transformation algorithm (as proposed
in this work), which resulted in a more precise background
subtraction. As the images are obtained by the perspective
projection, a 3 × 3 Homography matrix represents the rela-
tionship between keypoints through a projective mapping from
one plane (e.g. a frame) to another, and it is defined as

H = [
hi j

]
, where i = 1, 2, 3 and j = 1, 2, 3. (4)

In this work, we first estimate the Homography matrix
between frames and then apply it for perspective warp of those
frames onto a reference one in the sliding window frame-
work. Since the extracted features include both foreground
and background keypoints as well as noise, the initial step
is to filter out the moving foreground keypoints and noise
as outliers, before estimating the Homography matrix. The
rationale to do so is that, in the low to medium density
crowd scenes (as considered in this work), only the larger
set of keypoints belonging to background can represent the
camera motion model as inliers, while the fewer number
of keypoints belonging to independently moving foreground
targets are considered outliers, which do not fit the model.
In this paper, we apply RANSAC filtering scheme towards a
robust estimation, since it finds a solution with the largest
inlier support (hence, an improved camera compensation).
After filtering out the keypoints belonging to the foreground
as outliers, the Homography can be estimated between frame t
and t +�t as well as frames t and t + 2�t . The relationships
between these frames are shown as,

Kt = Ht,t+�t Kt+�t , Kt = Ht,t+2�t Kt+2�t . (5)

In (5), Kt and Kt+c�t |c = 1, 2 represent the homogeneous
coordinates of the k refined keypoints (i.e. inliers) in frames t
and t + c�t , respectively, while Ht,t+c�t |c = 1, 2 defines

the unknown Homography matrix between frame t + c�t and
frame t based on these points. Here, Kt (as well as Kt+c�t )
is in the form of⎛
⎝ U1(t)

V1(t)
W1(t)

U2(t)
V2(t)
W2(t)

. . .
Uk(t)
Vk(t)
Wk(t)

⎞
⎠ ;

{
Ui (t) = ui (t) · Wi (t) ∀i = 1, . . . , k

Vi (t) = vi (t) · Wi (t) ∀i = 1, . . . , k
(6)

where ui (t) and vi (t) stand for the vertical and horizontal
position of the i th detected keypoint in frame t , and Wi (t)
is any arbitrary scalar (due to homogeneous coordinates),
which can be set to 1, without loss of generality. In general,
the unknown Homography parameters of (5), in the vector
format of h = (h11, h12, h13, h21, h22, h23, h31, h32, h33)

T,
can be estimated by solving Ah = 0, using homoge-
neous linear least squares, where A(t + c�t) is defined
as, (7), as shown at the bottom of this page.

After estimating the unknown elements of h, at the image
registration step, we warp each of frames t + �t and t + 2�t
onto frame t based on perspective transformation of all their
pixels, using the estimated Homography matrices in (5),

I (T )
t+�t = Ht,t+�t It+�t , I (T )

t+2�t = Ht,t+2�t It+2�t (8)

where I (T )
t+c�t |c = 1, 2 represents the new pixel values of the

transformed frame t + c�t , after being warped into frame t .

B. Moving Targets Segmentation

Now that we have access to the two warped images at time
t + c�t|c = 1, 2 (i.e. I (T )

t+�t and I (T )
t+2�t ), we may eliminate

the background by taking the absolute differences of these two
perspective transformed images in S4. The resulting image
would be computed as

�It =
∣∣∣I (T )

t+2�t − I (T )
t+�t

∣∣∣ . (9)

It is noted that because of using two transformed frames in
our sliding window approach, the background motion compen-
sation would be more effective, where the registration error
is minimized due to using an independent reference image
for transforming the successive frames. Next, a threshold is
applied on �It to get rid of the shadowing regions and cre-
ating the silhouette mask of the potential moving foreground
(see Fig. 2(c)). Depending on the camera movement direction
and speed from frame to frame, we may experience uniformly

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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0
0
0
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−1
v1(t).u1(t + c�t)
v1(t).v1(t + c�t)

v1(t)

. . .

−uk(t + c�t)
−vk(t + c�t)

−1
0
0
0

uk(t).uk(t + c�t)
uk(t).vk(t + c�t)

uk(t)

0
0
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−uk(t + c�t)
−vk(t + c�t)

−1
vk(t).uk(t + c�t)
vk(t).vk(t + c�t)

vk(t)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

. (7)
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segmented thin bars on the image boundaries because of
registration and warping. An instance is shown in Fig. 1, where
black bars are generated in step S3. As these boundary bars
are results of camera movements, in this work, we disregard
them as background and set the value of corresponding pixels
to zero in S4, to preserve persistency and robustness.

At the final step S5, we differentiate and segment multiple
independently moving targets based on the local motion of
their detected blobs. However, there is always a need to
smoothen the image by applying a filter (e.g. Gaussian,
median, and box kernel) as post processing task to account for
the imaging noises caused by the camera. As a low-pass filter,
Gaussian mask reduces the image high-frequency components,
and hence, is commonly used for edge refinement in tar-
get detection applications to improve algorithm performance.
In this work, we apply an ng by ng Gaussian kernel for a linear
convolution on the silhouette mask. The size of the kernel
needs to be large enough to cover most of the segmented blobs,
but not so large that multiple blobs are overlapped at a time;
hence, independently moving targets regions can be separated
later in the process. Another source of remained noise, that
we need to handle before segmenting the moving foreground,
comes from the camera motion estimation error. Applying
a smoothing filter would not eliminate this type of noise.
Therefore, we apply the connected-components analysis for
completing and improving the background elimination phase,
while clustering the closely moving foreground regions that are
potentially parts of a unified target (e.g. a group of people).

Throughout this process, the morphological operations
(e.g. erosion and dilation) are being used on the mask image,
to shrink areas of small noise to zero, followed by rebuilding
the area of surviving components (i.e. segmented foreground
regions) that was lost in the previous operation. In other
words, erosion and dilation help in removing separate noises
and filling the holes in the segmented blobs belonging to the
same unified moving targets in the foreground, respectively.
The reason is that by taking the absolute differences between
successive frames, mostly edge regions of the moving targets
could be segmented due to the slight movement, when com-
paring adjacent frames. Therefore, by applying morphological
operations, we have “large enough” blobs of the surviving
foreground regions and can proceed to detect those segments
as multiple unified moving foreground targets.

Now, as the last procedure, the independently moving
targets regions can be separated using a local motion history
function, which will enable tracking the segmented blobs over
time. This motion history function uses floating point images
to represents the motion template. A set of these images
form a representation of the overall motion, by taking the
gradient of the silhouette image over time. At every new
frame, such function would be first updated based on the newly
segmented foreground. Next, the motion gradient and orien-
tation parameters of every single region are calculated based
on the spatio-temporal approach in our previous work [11]
to estimate the general movement direction of each moving
target. Finally, a motion segmentation routine (as discussed
in [18]) is applied to separate independently moving targets
based on their local motions. This completes our method

on effectively and robustly detecting independently moving
targets from a moving camera in an efficient manner. We may
also assign separate target boundaries for each independent
detected blob for display purposes. It is noted that, since the
kernel size of the post processing task may affect performance
of the local motion history function in segmenting multiple
targets, experimental analysis on selecting the appropriate
parameters for a general application is provided in Section IV.

IV. RESULTS AND DISCUSSION

In this work, a visual surveillance case study is considered
to validate and demonstrate the proposed method. An RGB
camera with a gimbal is mounted on a 3DR® X8+ drone
(i.e. UAV), and experiments are conducted with both vertical
and oblique views of the environment. We also used an
ODROID® U3 Linux computer with 1.7 GHz Quad-Core
processor and 2 GB RAM onboard the UAV for near real-time
processing of the data to analyze algorithm efficiency. Using
this testbed, we evaluated the proposed method on different
scenarios of crowd movements and at different camera setups
(i.e. speed, altitude, and view-angle), to verify its effectiveness
and robustness in segmenting the moving targets (see Fig. 3).
Fig. 3(a) shows three different time snapshots of a scenario
in which the movement of a crowd of 4 is captured by the
UAV’s onboard camera, flying at a low altitude and a rather
high speed; hence, the detection interval is set as low as 1 to
provide better performance. As shown in these image series,
the segmented blob can be used to represent a crowd of people
as one unified target (the middle image) or individual targets
(the top image), depending on their proximity and motion.
Fig. 3(b) shows a scenario of a crowd splitting to two groups,
captured at a lower speed; hence, �t is adjusted to 2 for
this scenario. As depicted in the bottom image of this figure,
a bicyclist with a faster speed entered the camera detection
range (top-left corner), and hence, is segmented with a longer
motion trail (due to the local motion history function). It is
noted that by setting the appropriate detection interval based
on the proposed heuristic, targets with different movement
velocities can be detected in a robust manner. Finally, Fig. 3(c)
shows the detection results for a scenario of 5 people scattered
in different directions, captured at higher altitude and with
�t = 3. Fig. 4 also compares the results of the proposed
method with our previously developed algorithm [11] on a
scenario of crowd control at two different altitudes, to verify
the achieved improvement as a result of applying perspective,
rather than affine transformation.

We applied our proposed method on a series of available
datasets related to surveillance and ITS applications to verify
its robustness and compare its performance with existing
methods in the literature, whose results are publicly available.
The selection of datasets has been based on introducing a
variety of challenges to the problem by considering differ-
ent camera setups and movements as well as various sizes,
shapes, and speeds for targets. The datasets considered in this
work include: Dataset1 (DARPA VIVID-EgTest05, featuring
a group of cars tracked along a road via aerial camera) [24],
Dataset2 and Dataset3 (featuring traffic scenes in an urban
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Fig. 3. The results of applying the proposed method on videos of different scenarios captured by UAV: (a) The scenario for a crowd of 4 people moving
together; (b) The scenario for a crowd of 4 people splitting into two groups and a bicyclist passing by (at faster speed); (c) The scenario for a group of 5 people
scattering.

Fig. 4. Comparison with the algorithm previously developed by authors at
two different altitudes: (a) Original video frames; (b) Results of algorithm
in [11]; (c) Results of the proposed method.

Fig. 5. The results of applying the proposed method on Dataset1, at three
frames: t=185; t=329; t=521: (a) Original frames; (b) Optical flow vectors;
(c) Detected foreground; (d) Ground-truth blobs [17].

area [19] and from the Hopkins 155 dataset [25], captured
via moving hand-held cameras), Dataset4 (featuring a person
movements captured via axial rotation of the camera) [17],
Dataset5 (UCF Aerial Action dataset, featuring 3 cars on
a road captured via extreme shift of aerial camera) [26].
Fig. 5 shows the experimental results of applying the proposed
method on Dataset1. As shown in this figure, our method
has successfully segmented the independently moving vehi-
cles, despite the encountered challenges, such as rapid rotary

Fig. 6. Comparison with exiting methods on Dataset2: (a) Original frame;
(b) Results of MLH; (c) Results of BMS; (d) Results of PV; (e) Ground-truth
data; (f) Results of MCBS; (g) Results of SEC; (h) Results of our proposed
method.

motions of the aerial camera, illumination changes, and highly
textured background. Dataset2 and Dataset3 are also used to
provide different view-angles for the ITS-related applications,
so that the robustness of the proposed method can be evaluated.
Fig. 6 illustrates the comparisons of results with the ground-
truth data of Dataset2, as well as other existing methods
in the literature (i.e. multi-layer Homography (MLH) [16],
BMS [17], particle video (PV) [19], moving camera back-
ground subtraction (MCBS) [27], and segmentation with effec-
tive cue (SEC) [28]). As shown in this figure, the qualitative
results provided by the proposed method outperforms those
reported by the existing methods, in terms of foreground
segmentation accuracy. The main reason is that our algo-
rithm estimates the general background motion, rather than
reconstructing the camera motion by interpolation, as in BMS.
MLH also missed to segment the whole moving regions and
has focused on the motion trajectories. Moreover, both MLH
and MCBS show some false positives in the left boundaries of
the images due to camera movements. Finally, PV and SEC
methods provide fuzzy segmentation of the moving targets,
while our method presents an accurate segmentation.

We have also reported results based on several quantitative
performance evaluation metrics, related to target detection and
segmentation. The measures considered in this work include
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TABLE I

QUANTITATIVE PERFORMANCE ANALYSIS ON THE PROPOSED METHOD

Accuracy, Specificity, Precision, and Recall, which are defined
as follows:

Accuracy = T p + T n

N
, Specificity = T n

n
,

Precision = T p

T p + Fp
, Recall = T p

p
(10)

where p is the number of positive (foreground) pixels and
n is the number of negative (background) pixels reported by
the detection algorithm, Tp is the number of true positives and
Tn is the number of true negatives in the test frame compared
to the ground truth, Fp is the number of false positives and
Fn is the number of false negatives in the test frame, and
finally, N is the total number of pixels in the test frame,
depending on the image resolution. Furthermore, two com-
posite performance metrics, F-measure and Gmean [29], are
also considered as compromises between previous measures
and can be used as the criteria to compare the performance
with other existing methods. These metrics are defined as

F − measure = 2 × Precision × Recall

Precision + Recall
,

Gmean = √
Speci f ici ty × Recall. (11)

Table I summarizes quantitative performance analyses on
the proposed method compared to some other methods which
have reported their results on the datasets considered in this
work. Although the metrics in (10) and (11) are usually
measured for evaluating the performance of pixel-level seg-
mentation algorithms, some of them can be simply applied to
evaluate moving targets detection performance. As an instance,
Recall can be defined as the ratio of truly detected targets to the
total number of moving targets. Since the proposed algorithm
successfully detected all moving targets on the considered
datasets (though partially, in some cases), its detection-based
Recall is 1.0. Therefore, in this work, we focus on evaluating
the results in terms of moving foreground segmentation, for
which, the proposed motion detection method shows a compa-
rable and mostly promising performance versus state-of-the-art
segmentation methods in the literature. According to Table I,
the results of our method outperforms the BMS results on all
datasets in terms of Gmean (by 3.5% on average) and we also
obtained an average improvement of 33% on F-measure values
provided by motion decomposition (MD) method [4]. It is
noted that the proposed method also significantly improves
the efficiency compared to these methods in terms of very

Fig. 7. Performance comparison with BMS on parts of Dataset2: (a) Mean
and standard deviation of the metrics; (b) Results of applying the two methods
on a series of frames to justify better performance of the proposed method
on Recall.

shorter run-time. More specifically, our method generates final
results in less than 0.2 sec/frame on average for the considered
datasets (see Fig. 9), while BMS takes at least 1.03 sec/frame
(disregarding optical flow step) and MD takes 1.89 sec/frame
on a 3.4 GHz CPU with 32 GB RAM.

Fig. 7 demonstrates the detailed performance of proposed
method in terms of criteria provided in (10) and (11), when
applying on a portion of Dataset2. Fig. 7(a) verifies that our
proposed method has higher values of Recall and Gmean on
average, while F-measure values are higher than those of BMS
after a certain point (frame 25). Moreover, the variations of
these metrics are lower compared to the BMS method. The
provided results are promising, since the BMS algorithm is
designed to accurately classify the foreground and background
in the pixel level, and hence, the Precision and F-measure of
the BMS are expected to be generally higher. It is noted that
the Recall performance for the BMS method drops dramati-
cally after frame 25. The reason could be that the front car
(at the left) starts to exit the camera view and the algorithm
of pixel classification using bi-level segmentation (coarse and
fine) cannot handle boundary pixels very well. However, our
algorithm can address such issues due to its uniform keypoint
extraction via PLK and perspective registration of frames in
a sliding window, which is robust to changes in velocity and
location of the moving target. Moreover, the third car at the far
right is moving at a slower rate, for which, the BMS algorithm
did not classify any of its pixels as moving foreground,
while our method partially did so. Fig. 7(b) illustrates the
qualitative results of the two algorithms on frames 25 to 33
of this dataset for clarification. As shown in this figure,
the proposed method can detect 3 out of 3 moving targets,
hence its Recall on moving target detection is 1.0, while
BMS detects only 2 targets at a lower Recall value. We have
highlighted the false positive and false negative regions on
the BMS results by magenta and black circles, respectively.
Note that in these image series, increased false positives results
in greater T p + Fp, which causes Precision value decreases
(T p/(T p + Fp)), while increased false negatives results in
smaller T p, which ends up reducing the Recall value (T p/p).

We have also provided empirical analyses on the optimal
values for the parameters considered in the proposed method.
Fig. 8 represents the results of these studies on videos recorded
from UAV camera. As shown in Fig. 8(a) the proposed
algorithm is not very sensitive to the values of Gaussian kernel
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Fig. 8. Sensitivity Analysis of the performance metrics on key parameters:
(a) Based on different values of Gaussian kernel parameter; (b) Based on
different values of Dilation parameter; (c) Based on different values of Erosion
parameter; (d) Two-way analysis based on Dilation and Erosion parameters.

size in the post processing task; hence, in this work, we set
ng between 3 to 7. The graphs in Fig. 8(b) and Fig. 8(c)
show the evaluation results based on variation in the mor-
phological operations (i.e. dilation and erosion) parameters.
As depicted in the figures, increasing the dilation kernel size
reversely affects the Precision performance, while the Recall
performance gets improved. The opposite is true for Erosion
kernel, where Precision slightly improves by increasing the
parameter and Recall performance deteriorated at the same
time. Depending on the camera distance (i.e. altitude) and the
size of target of interest, the selection of these parameters may
vary slightly; however, similar parameter setting and patterns
of performance variation apply to Dataset1 and Dataset5,
recorded from aerial cameras. Although depending on the
application, one of the two performance metrics might be
of higher interest for improvement, in this work, parameters
with the highest F-measure and Gmean values are considered
optimal for the proposed method (e.g. values between 1 to 3
for erosion kernel size). Finally, Fig. 8(d) shows a complete
two-way analysis based on dilation and erosion parameters
for all different performance metrics in this work. The same
discussion about parameter setting based on performance
metric of interest (i.e. F-measure and Gmean), holds here.

As a key parameter, the value of detection interval also
needs to be adjusted based on the empirical relationship pro-
vided in (2). In this work, since the computational complexity
of the proposed algorithm only differs based on the image
resolution (see Fig. 9), the sensitive parameters for setting
the detection interval are altitude and speed of UAV, as well
as video streaming rate. Therefore, we initialize the value of
�t at 1 frame (i.e. processing every successive frame in the
sliding window) for the initial values of R(c) = 10( f ps),
A(v) = 20(m) and S(v) = 5 (m/s). These values are set based
on a series of experiments on different videos captured by
UAV’s onboard camera, to find the best combination for more
accurate results. As the values of these parameters change,

Fig. 9. Computational cost analysis: (a) Mean and standard deviation of
the processing time based on the resolution; (b) Time analysis of different
datasets.

the detection interval can be adjusted to higher values for
robustness. The results of applying different values of �t have
been discussed previously, through Fig. 3 and Fig. 4.

Finally, the computational complexity of the proposed
method is studied for the sake of efficiency evaluation.
Fig. 9 shows the time analysis in terms of the processing time
per frame based on different image resolutions. As discussed
earlier in this section, the average processing time for our
method is less than 0.2 sec/frame, which is very promising
with respect to the limited computational resources onboard
the UAV. As shown in Fig. 9(a), even for resolutions as high
as 720 × 960, the proposed method is still efficient for near
real-time implementation. Fig. 9(b) also provides the detailed
processing times for different datasets considered in this work.

V. CONCLUSIONS AND FUTURE WORK

In this work, we proposed an effective, and efficient method
for detecting multiple independently moving targets from a
monocular moving camera onboard UAV in a robust manner.
A sliding-window framework is considered, where at each
time frame t , the keypoints are extracted and tracked onto
the next two frames with gap �t . These frames are then
registered through perspective transformation onto frame t .
Finally, a local motion history function is applied after post
processing operations, to separate the independently moving
targets.

We tested our method using videos captured by UAV as
well as publically available datasets. The experiments on
different scenarios demonstrated promising results based on
the quantitative and qualitative evaluations. More specifically,
the effectiveness of the proposed method is evaluated by
considering results on different camera setups (in terms of
altitude, speed, and view-angle) and various applications; its
effectiveness is verified through comparisons with ground-
truth data as well as state-of-the-art methods, while reporting
the achieved performance in terms of common performance
metrics; and the method’s efficiency is demonstrated by com-
putational time analyses and compared with reported run-
times of existing methods. Sensitivity analysis studies have
also provided for optimal setting of the key parameters in the
proposed method.

As a future research work, we aim at proposing a robust data
association algorithm to differentiate and associate multiple
detected targets over a sequence of video frames for the
application of target tracking through UAVs, while considering
various surveillance scenarios.
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